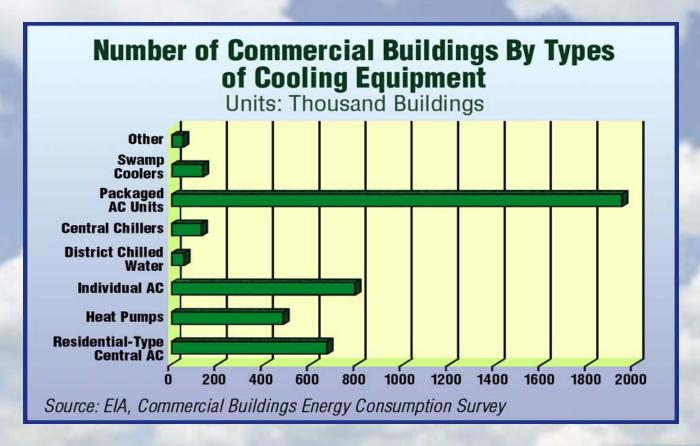
Active Desiccant Module (ADM) for Commercial Packaged Equipment:

(Product Development and Field Demonstration)

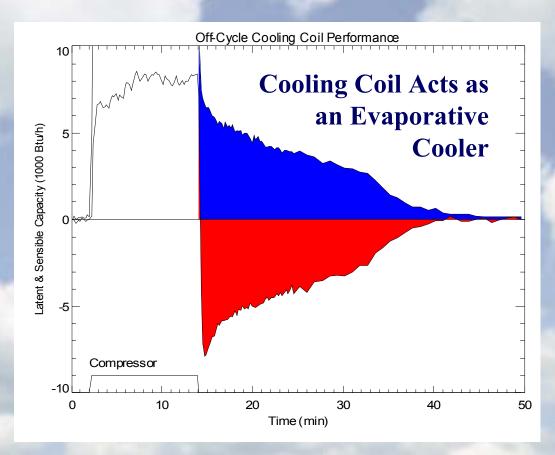
2002 DOE Peer Review: Presented by John Fischer



Impact of IAQ Standards on Energy Consumption in Commercial Buildings

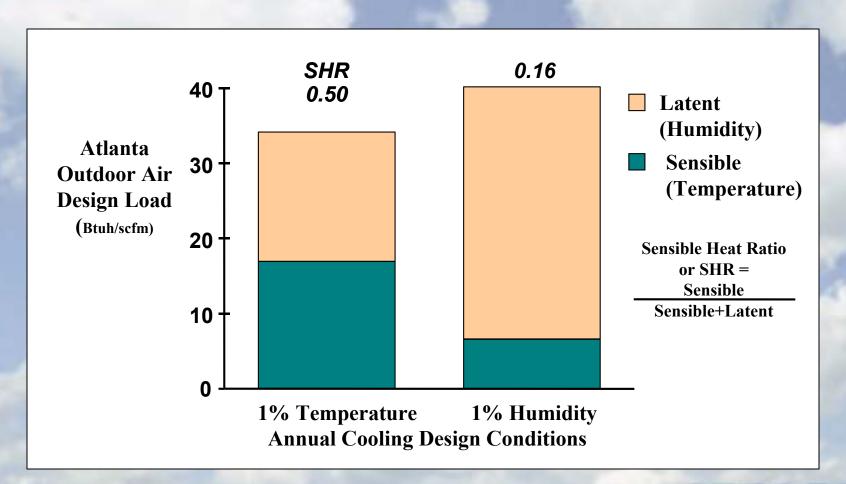
- ASHRAE Standard 62: Increases the quantity of outdoor air, delivered continuously, to maintain an acceptable indoor air quality
- Conventional packaged HVAC systems are designed to provide only minimal amounts of outdoor air intermittently (humidity problems)
- Conditioning outdoor air involves primarily latent load (humidity) during peak design

U.S. HVAC Market is Dominated by Packaged Equipment



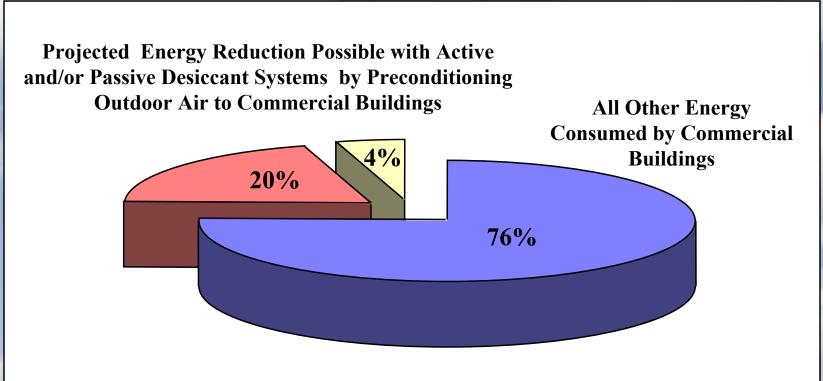
Over-sizing Packaged Units to Handle Outdoor Air Degrades Latent Capacity

- Moisture condenses on cooling coil surfaces during cooling operation
- When coil (or compressor) is deactivated wet surfaces are exposed to the air stream
- Moisture evaporates back into air stream as the fan continues to run in order to deliver the outdoor air continuously
- Net effect: Less moisture removal & higher space humidity level, lower thermostat setting


Excess Sensible Capacity Results in Short Cycle Time and High Space Humidity

Source: Hugh Henderson, 1998 ASHRAE IAQ 98 Paper

Outdoor Air: Mostly Latent Load



Energy Code and IAQ Code: On a Collision Course

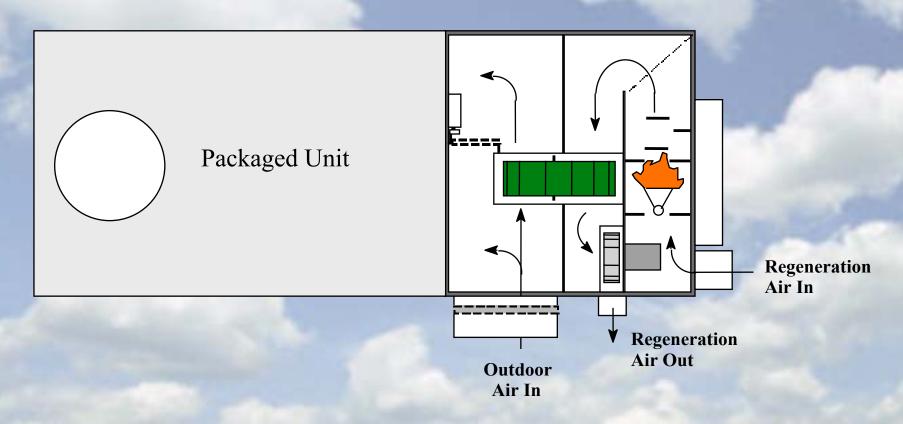
- Significant increase in outdoor air quantities will mean huge escalation in energy consumption without new design approaches
- Packaged equipment is currently used for most commercial HVAC systems
- Packaged equipment can not accommodate the increased outdoor air quantities without creating humidity problems or using reheat
- Reheat further increases energy consumption

Energy Impact: Ventilation Air

U.S. Commercial Buildings Energy Consumption Increase Over 10 Years:
DOE Projected Base Energy Increase: Years 1990 to 2000 (1.31 Quadrillion BTU)

SEMCO Phase 1 Report: ORNL/SUB/94-SV044/1

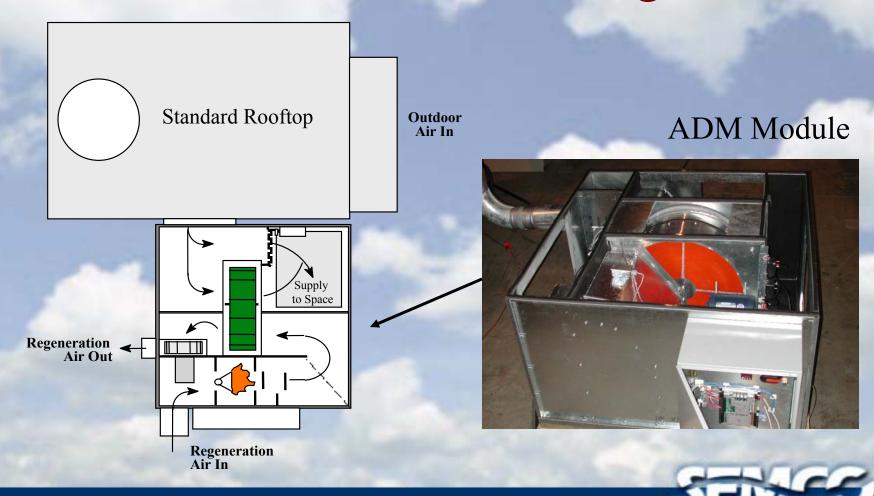
The SEMCO ADM Module



Phase 1: Product Development

- Detailed analysis to determine market driven need and key performance parameters
- Reviewed current and past design approaches
- Identified "sweet spot" for active desiccant contribution
- Minimized size, first cost and simplified installation procedures
- Maximized control and installation options

Previous Active Desiccant Systems Installed Upstream of the Cooling Source



Results of This Approach

- All of the outdoor air is processed by active desiccant wheel in this arrangement (not sweet spot)
- Large moisture removal required means high regeneration temperatures and low face velocities
- High heat of adsorption requires significant post cooling or second sensible recovery wheel
- Results in a large active desiccant wheel and large overall system with a high manufacturing cost

ADM Approach Places Active Wheel Downstream of the Cooling Coil

Advantages of ADM Approach

- Much smaller desiccant wheel processing only 1/3 of the outdoor air stream
- Greatly reduced energy consumption and required regeneration temperature
- Much smaller system to match with existing packaged rooftop equipment, lower cost
- Can produce drier air than other approaches
- More control options

Comparing Active Desiccant Approaches

	ADM Rooftop Combination	Active Desiccant Preconditioning (Note 3)	Traditional DBC Preconditioning (Note 4)
Cooling Capacity Required (Tons)	5 tons	8.4 tons	2.5 tons
Air Process by Active Wheel (CFM) Regeneration Energy Rqd. (BTU/Hr)	540 33,500	1,500 82,620	1,500 61,480
Supply Dew Point Used for Analysis	56 degree F	56 Degrees F	56 Degrees F
Annual Cooling Energy Cost (Note 1)	\$1,360	\$2,620	\$1,560
Unit Approximated Size (H x W x L)	31" x 46" x 46"	52" x 66" x 66"	52" x 66" x 106"
Relative Cost of Manufacturing	1	2.2	3

Note 3: Excessive heat carry-over degrades energy savings

Note 4: Includes a second sensible only wheel to reduce the cost of operation

ADM Advantage Over Customized Packaged Outdoor Air Systems

	ADM Rooftop Combination	Custom DX Rooftop (over-cool and reheat)
Cooling Capacity Required (Tons)	5 tons	10 tons
Reheat Energy Required (BTU/Hr) Regeneration Energy Rqd. (BTU/Hr)	0 33,500	32,400 N/A
Supply Dew Point Used for Analysis	56 degree F	56 Degrees F
Annual Cooling Energy Cost (Note 1)	\$1,360	\$2,480
Unit Approximated Size (H x W x L)	31" x 46" x 46" (note 2)	50" x 70" x 106"

Note 1: Based on a 1,500 cfm outdoor air preconditioning system

Note 2: Plus conventional 5 ton rooftop (approx. 33" x 46" x 83")

Fully Integrated System Development

Full Laboratory Testing:

(Excellent Example of Industry Partnership)

Phase 2: Field Demonstration Sites

- Demonstration Pilot Sites
 - Resort Hotel (Callaway Gardens)
 - Chain Restaurant (Hooters)
- Both sites in operation, fully instrumented with remote monitoring capabilities
- "Virtual Laboratory sites"
- Both retrofit sites, helping existing facilities to resolve serious humidity control problems
- Excellent results to date

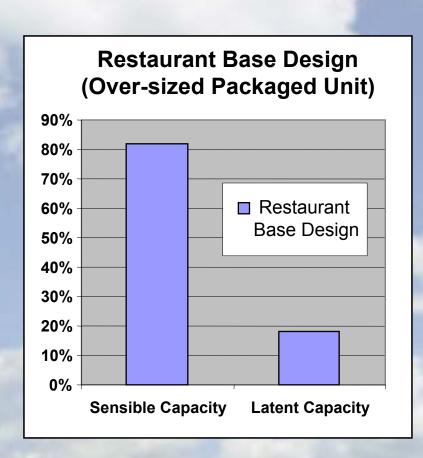
Fresh, Dry Outdoor Air to Guest Rooms

Typical Chain Restaurant Facility

Kitchen Open to the Dining Area

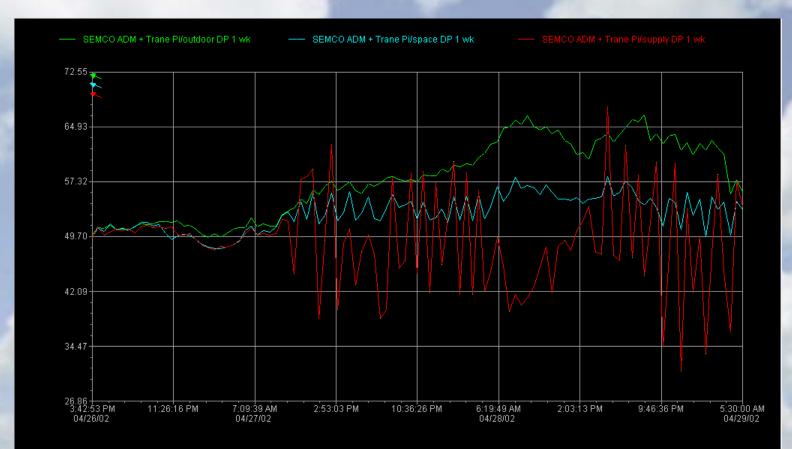
Fresh, Dry Outdoor Air for Kitchen Exhaust Makeup and ETS

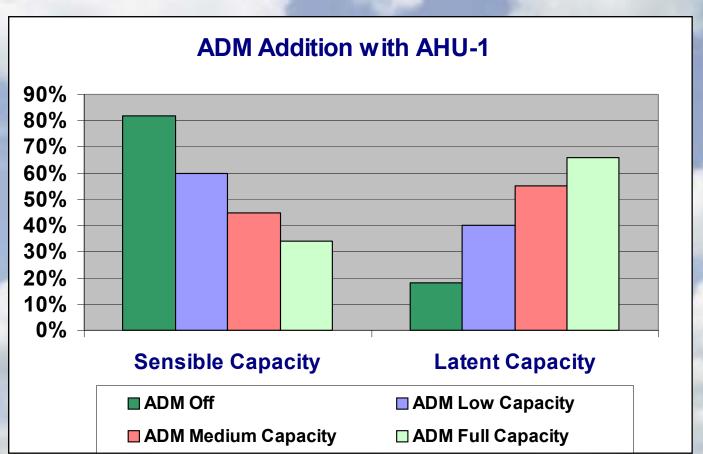
Active Desiccant Wheel in ADM



Key Advantages Offered by ADM

- Reduced cooling tons with increased latent capacity, simplified controls
- Improved humidity control, variable SHR
- Reduced energy consumption higher thermostat setting at same comfort level
- Lower cost fuel (gas or waste heat) used for dehumidification, "clean technology"
- Dehumidification without compressors during part-load conditions


ADM Creates a "Latent Preconditioner" Using a "Down-Sized" Packaged Unit



ADM Delivers Low Dewpoint Air Required for Space Conditioning

With Modulation the ADM Can Vary the Sensible and Latent Capacity Delivered

Control Options to Match Space Loads

Active Desiccant Module (ADM) for Commercial Packaged Equipment:

Product Development and Field Demonstration

2002 DOE Peer Review: Presented by John Fischer

